GEOLOGICAL INVESTIGATIONS OF THE H-W DEPOSIT, BUTTLE LAKE CAMP, CENTRAL VANCOUVER ISLAND

By T.J. Barrett, R.L. Sherlock
Mineral Deposit Research Unit, U.B.C.
S.J. Juras
Westmin Resources Limited
G.C. Wilson
Turnstone Geological Services Limited
R. Allen
Volcanic Resources

(KEYWORDS: economic geology, Buttle Lake, Sicker Group, H-W horizon, lithogeochemistry, massive sulphide, gold, silver, copper, lead, zinc, andesite, rhyolite.

INTRODUCTION

The Myra Falls deposits of the Buttle Lake mining camp (49°34'N, 125°36'W) occur in Paleozoic Sicker Group rocks of Vancouver Island, within the Wrangellia allochthonous terrane of the Insular Belt of the western Cordillera. The deposits are located at the south end of Buttle Lake, 90 kilometres by highway from Campbell River (Figure 1). The deposits include the past-producing Lynx and Myra orebodies, which were brought into production in 1967, and the producing H-W orebody and adjacent North Lens, discovered in 1979. In 1991 the Battle and Gap zones were discovered along strike and to the west of the H-W orebody and are scheduled to begin production in 1993.

This paper is based on 1993 fieldwork involving relogging and sampling of selected drill-cores through the stratigraphic sequence hosting the H-W orebody, as well as preliminary lithogeochemistry and ore petrology. Robinson et al. (1994) describe stratigraphic relations in the Battle zone, which occurs at the same level in the camp stratigraphy as the H-W deposits. In order to avoid repetition of the general geology and mine stratigraphy the reader is referred to Robinson et al. (1994; this volume) for a detailed discussion. Earlier work on the geology and geochemistry of the volcanic hostrocks is summarized and discussed by Juras (1987); preliminary fluid inclusion results are reported by Hannington and Scott (1989).

H-W STRATIGRAPHY

The stratigraphy at the H-W deposit comprises a series of relatively flat lying mafic and felsic volcanic units (Figure 2). Stratigraphic columns for two exploration holes that penetrated thick sections of the H-W orebody are given in Figures 3 and 4. The stratigraphically lowest unit, the Price andesite (Figure 2), forms the footwall to the sulphide mineralization and comprises at least 300 metres of massive to pillowed andesite flows and flow breccias, with minor volcaniclastic andesitic rocks. This unit is directly overlain by the Myra formation, the lowest part of which is the H-W horizon (unit 1, Figure 2). The H-W horizon comprises 50 to 100 metres of felsic subaquous volcaniclastic and pyroclastic beds, lesser interbedded black mudstones, and a lens of quartz-feldspar-porphyritic rhyolite up to 50 metres thick.

Much of the footwall beneath the Main and North lenses is intensely altered to a sericite-pyrite-quartz assemblage, locally with significant chlorite. Laterally to this, the alteration is dominated by an albite-sericite-quartz assemblage. Least-altered samples are massive, feldspar-pyroxene-porphyritic andesite (Juras, 1987).

The massive sulphide lenses occur at the contact between the Price andesite and the H-W horizon (Figure 2). They are underlain by a strongly altered and pyritized feeder zone that extends at least 25 to 50 metres down into the andesitic footwall. Mineralization directly above the footwall andesite is typically massive pyrite with only trace disseminated chalcopyrite. This style grades vertically into massive pyrite with several percent disseminated chalcopyrite, that constitutes the bulk of the ore body. This massive sulphide is typically overlain by an upper interval of semimassive to disseminated polymetallic mineralization alternating with felsic massflow units. This upper interval of mineralization tends to be dominated by sphalerite, galena, tennantite and burrite.
Figure 1. Location map for the Myra Falls massive sulphide deposits. Also shown is a longitudinal section of the relative locations of the various orebodies.
The felsic mass-flow units of the H-W horizon are composed of a monomict assemblage of rhyolite clasts. Beds range ranging from 0.1 to 1 metre thick and are generally graded, with younging directions up-hole. Clast range from rounded to subangular and appear to have been reworked.

A large body of quartz-feldspar-porphyritic rhyolite (QFP) wedges into the H-W horizon about 50 to 100 metres to the north of the H-W deposit, and thickens progressively northwards. It can be traced for more than 2 kilometres westwards to the Battle zone. The H-W horizon also contains distinctive black mudstone intervals with interbedded felsic volcanioclastic rocks. Black mudstones that occur just above the H-W orebody continue northwards above the QFP wedge, but not below it.

The H-W andesite is a sill-flow complex that is partially intrusive into the H-W horizon. It comprises flows and breccias of basaltic andesitic and andesite that form a lens of several hundred metres in diameter above the area of the H-W deposit. To the southwest, in the area of 33+50N, the H-W andesite is overlain by a lens of silicic dacite up to 75 metres thick (Figure 2). Above the H-W deposit, in the area of 39+50N, a smaller dacite lens intervenes between the H-W horizon and the H-W andesite.

Stratigraphically above the H-W andesite is the ore-clast breccia, which consists of mainly andesite volcanioclastic debris-flows, locally with some rhyolite and minor sulphide clasts. This is followed by green tuff breccias and bedded coarse to fineuffs which mark the end of the first volcanic cycle. An overlying thick sequence of mafic-rich volcanioclastics with lesser rhyolite forms the second volcanic cycle, and is host to the Myra-Lynx-Price orebodies.

LITHOGEOCHEMISTRY

A suite of 27 whole-rock samples from exploration holes W-111 and W-123 was analyzed by X-ray fluorescence using glass beads for major elements, and pressed pellets for trace elements. The locations of the samples are shown next to the stratigraphic logs in Figures 3 and 4. The purpose of the lithogeochemical study was to identify the main volcanic units, particularly where core and petrographic identification is difficult due to severe alteration.
The lithogeochemical data for the H-W volcanic rocks have been examined using immobile element relationships (e.g. Ti-Al-Zr) to identify rock types and characterize alteration, as described by MacLean and Kranidiotis (1987), MacLean (1990), and Barrett and MacLean (1991). The results (Figure 5) define two main alteration trends in plots of both Al$_2$O$_3$ versus TiO$_2$ (a) and Al$_2$O$_3$ versus Zr (b). These trends result from alteration of rhyolite and andesite precursors. Ideally, a single alteration line results from alteration of a homogeneous precursor, with the spread of points along a given alteration line reflecting the overall mass change in the mobile elements. Net mass gain in mobile elements moves a sample point from its precursor location along a line towards the origin, whereas net mass loss moves a point in the opposite direction.

The altered footwall andesites show a small compositional range in terms of their immobile element ratios. This primary range leads to a fan-like distribution for the altered samples (Figure 5). Of particular interest is the fact that the footwall andesite (DCp, Figure 2), which in places is altered beyond recognition and contains up to 50% sulphides, yields a perfectly straight alteration line in the Al$_2$O$_3$ versus TiO$_2$ plot (Figure 5a). This indicates that the drilled interval from at least 636 to 682 metres was derived from an andesitic precursor with uniform immobile element ratios. A later study will present calculated elemental mass changes in the alteration zone of the H-W deposit.

Five samples of H-W andesite from the hangingwall (unit 2, Figure 2) have a tight Al$_2$O$_3$ versus Zr composition (Figure 5b). Their major element composition, and lack of alkali exchange in particular, indicates that the H-W andesite is much less altered than the footwall andesite. Although the H-W andesite has slightly higher Al$_2$O$_3$ versus Zr ratios than the footwall andesite, their Al$_2$O$_3$ versus TiO$_2$ ratios are similar, as are other trace element ratios. This suggests that the H-W and footwall andesites are compositionally closely related.

The single rhyolite alteration line (Figure 5) is rather unexpected, given the fact that the samples were taken from several felsic mass-flow or turbidite beds. These...
The H-W deposit consists of the Main, North and Upper sulphide lenses, of which the first two occur at the base of the H-W horizon (unit 1). The lenses consist of fine-grained massive to thinly banded pyrite, sphalerite and chalcopyrite with minor bornite, galena and tennantite; gangue minerals are quartz, barite and sericite. The Main lens is some 1200 metres long, 500 metres wide and up to 80 metres thick (Juhas, 1987). There is a general zoning from a pyrite core with sphalerite and chalcopyrite-rich areas, to a pyrite-barite-rich margin with notable sphalerite-chalcopyrite, galena and bornite (Walker, 1985). The upper lens mineralization is near the top of the H-W horizon (unit 1). It comprises disseminated to locally massive polymetallic sulphides. Much of the intervening sequence of unit 1 felsic volcanoclastics is strongly altered, probably as a result of continued hydrothermal activity after formation of the Main and North lenses.

MINERAL COMPOSITIONS

Polished mounts (total area = 92 cm²) were prepared from six samples of disseminated, brecciated, banded and massive sulphide ores. These were characterized in terms of mineralogy, textures and mineral chemical isity. The modal proportions of each ore and gangue phase were estimated visually: four stopes samples from the H-W deposit contain 40 to 90 volume percent sulphides, averaging about 60%. Two drill-core samples from the Upper zone contain 8 to 15% sulphides. The five key ore minerals, in terms of average volume percent across the sample set, are: pyrite (28%), sphalerite (9%), chalcopyrite (7%), galena (1%) and tennantite (0.4%), averaging a total of 45% for all samples.

Four complementary techniques were used for mineral analysis. On scales ranging from about 0.01 to 1 millimetre, polished samples were analyzed for major, minor and trace elements. Elements expected at levels of 0.1 weight percent (1000 ppm) or more were analyzed by electron microprobe (EPM). A survey of minor and trace elements in the 5 to 5000 ppm range was conducted by proton microprobe (PIXE). A limited study of gold distributions (<10 ppm) was carried out using accelerator mass spectrometry (AMS) and ion microprobe (SIMS) methods.

The EPM and PIXE data indicate that common sulphides, particularly pyrite, almost always contain much less than 500 ppm (0.05 wt.%) arsenic. Silver occurs at significant levels in only two minerals, namely tennantite (0.1-1.2 wt.%) and galena (6-250 ppm based on three PIXE analyses). Over 30 elements were analyzed by microprobe methods; the PIXE survey also yielded some minor element data. Cadmium is present in sphalerite and tennantite at concentrations of 0.33 and 0.1 weight percent, respectively. Chalcopyrite contains a
few tens of parts per million selenium and indium; tennantite contains up to 500 parts per million tellurium. Pyrite and chalcopyrite may each host tens of parts per million of molybdenum.

Good agreement in reconnaissance surveys of gold by SIMS, and its ultrasensitive variant AMS indicates that gold contents in pyrite and chalcopyrite are in the 25 to 1000 parts per billion range, with the higher values occurring in pyrite. This is inadequate to account for the 1.9 to 3.9 grains per tonne gold reported in the bulk assays. Contributions from submicroscopic inclusions at grain boundaries and scattered grains of gold or electrum (not seen in this study) may account for the balance. A third possibility not yet evaluated is a contribution from 'invisible gold' in tennantite (PIXE lacks the sensitivity required for a definitive check on gold).

CONCLUSIONS

A preliminary interpretation of the lithological sequence in the H-W area is:

i) Accumulation of a widespread mafic volcanic footwall of andesitic flows and sills.

ii) Deposition of some massive sulphides on the mafic volcanic footwall.

iii) Accumulation of felsic volcaniclastic debris-flows in the area of the H-W deposit but in felsic flows (or shallow sills) in the area of the north lens.

iv) Continued sulphide deposition as infillings within porous unconsolidated felsic debris-flows, and local precipitation of barite and chert.

v) Accumulation of pelagic black mud, with continued episodic deposition of felsic debris-flows in the black muds.

vi) Emplacement of an andesite sill/flow complex (H-W andesite) into and onto the felsic debris-flows unit.

vii) Accumulation above the H-W andesite of mafic-rich and lesser felsic volcaniclastics that form the second volcanic cycle and host the Myra-Lynx-Price orebodies.

Immobile element plots have been used to effectively identify heavily altered (and locally mineralized) rocks near the H-W orebody. These identifications allow the hangingwall-footwall contact to be established, and permit correlation of individual volcanic (and even volcaniclastic) units within the mine stratigraphy.

FURTHER WORK

Our continued work at Myra Falls will include:

- definition of the H-W stratigraphy and extent of hydrothermal alteration using detailed lithogeochemistry and petrography;
- comparison of H-W stratigraphy with that of the Battle zone 1 to 2 kilometres to the west (Robinson et al., 1994, this volume);
- identification of the mineral assemblages in the H-W orebody and the trace metal composition of sulphides and sulphosalts; and
- characterization of the temperatures and compositions of the mineralizing fluids. Once these volcanic units are identified using immobile element relations mass changes will be calculated for each mobile element in order to reveal the intensity and distribution of hydrothermal alteration around the H-W orebody.

ACKNOWLEDGMENTS

We are indebted to Westmin Resources Limited for permission to publish information on the H-W deposit, and to Cliff Pearson, Finlay Bakker and Ivor McWilliams for geological information and discussions. The electron microprobe work and accelerator mass spectrometry were carried out at the Department of Geology and the Isotrace Laboratory, University of Toronto. The PIXE and SIMS analyses were conducted at the University of Guelph and at CANMET (Ottawa), respectively.

Research at the Myra Fall deposit forms part of a Mineral Deposit Research Unit project on Volcanogenic Massive Sulphide Deposits of the Cordillera, funded by the Natural Sciences and Engineering Council of Canada, the Science Council of British Columbia, and ten mining and exploration member companies.

REFERENCES

