PROGRESS REPORT: STRATIGRAPHY AND STRUCTURE OF
THE SHUSWAP METAMORPHIC COMPLEX IN THE HUNTERS RANGE,
EASTERN SHUSWAP HIGHLAND
(82L)

B. J. Johnson
Carleton University and Ottawa-Carleton Geoscience Centre

KEYWORDS: Structural geology, stratigraphy, Shuswap complex, Tertiary extension, Eagle River fault, Hunters Range, Selkirk allochthon, Mesozoic compression.

INTRODUCTION

In the interest of exploring the role of Tertiary extension in the development of metamorphic core complexes in the southern Omineca Belt, fieldwork was undertaken in 1987 to examine the geology of the Eagle River fault in the eastern Shuswap Highland. The Eagle River fault is a west-side-down low-angle normal fault that juxtaposes low to medium-grade metasedimentary and metavolcanic rocks of the Palaeozoic Mount Ida Group atop high-grade gneisses of the Shuswap metamorphic complex (Figure 1-4-1 inset).

Regional geology of the Shuswap Highland was first mapped by Jones (1959). He subdivided the metamorphic rocks into two groups of low-grade rocks (Mount Ida and Chappperon), and a group of high-grade rocks (Monashee) that approximately coincides with what commonly is called the Shuswap metamorphic complex (see Okulitch, 1984). Geology of the Shuswap metamorphic complex in the Monashee Mountains north of 51° north latitude was mapped by Wheeler (1965). Fyson (1970) examined the structural geology of the Shuswap Lake - Mara Lake area, where he described four phases of deformation. Nielsen (1982) investigated the stratigraphy, structure and metamorphism of the Mount Ida Group and the Shuswap Complex around Mara Lake. His study supported a report by Okulitch (1974) that rocks of the Mount Ida Group have high-grade equivalents in the Shuswap Complex. Okulitch (1979) proposed that part of the Mount Ida Group (Eagle Bay assemblage) is correlative with North American pericratonic rocks, based on his examination of the stratigraphy, structure, paleontology and geochronology of rocks in the Shuswap Lake area. The Eagle Bay assemblage has been studied in detail by Schiarizza and Preto (1984).

Jones (1959) was the first to recognize that the Mount Ida Group was separated from the high-grade gneisses of the Shuswap metamorphic complex by a fault, but he inferred this fault to dip steeply. Journey and Brown (1986) noted that the fault, which they named the Eagle River detachment, was a gently dipping, west-side-down normal fault. They inferred it to have formed in response to Tertiary extension, and suggested that it is connected to the Okanagan shear zone (Figure 1-4-1 inset).

Mapping at 1:50 000 scale in 1987 was concentrated in the Hunters Range of the eastern Shuswap Highland (82L/16, 13, 14, 11, 10), focusing on the geology of rocks of the Shuswap metamorphic complex that lie structurally above the Monashee complex (Read and Brown, 1981; Figure 1-4-1 inset) and beneath the Eagle River fault. These rocks are part of an allochthonous sheet (Selkirk allochthon) that was carried eastward over the Monashee complex along the Monashee décollement, a major ductile shear zone related to mainly Mesozoic crustal shortening (Brown et al., 1986).

STRATIGRAPHY

The rocks of the Hunters Range have been subjected to upper amphibolite facies metamorphism, as indicated by sillimanite + potassium-feldspar mineral assemblages in pelitic schists. Generally these minerals appear fresh, except in the northeastern Hunters Range near Mount Griffin, where retrograde muscovite is abundant. Metamorphic rocks throughout the Hunters Range are intruded by pegmatites, which commonly form 50 per cent of the total rock volume. The stratigraphy of each of three subareas is described here; there is not yet sufficient data from intervening areas to demonstrate relationships between them (Figure 1-4-1).

SUBAREA 1: THREE VALLEY GAP - MOUNT GRIFFIN

A long roadcut along the Trans-Canada Highway at Three Valley Gap exposes a southwest-dipping succession of quartzofeldspathic gneiss, semipelite and minor diopsidic quartzite, that contains truck-sized boudins of garnet amphibolite. These rocks structurally overlie a chaotic assemblage that is truncated below by the Monashee décollement (Bosdachin and Harrap, in press). They therefore represent part of the deepest structural level of the Selkirk allochthon in the area of study. The amphibolite boudin-bearing unit is separated from rocks to the west by a vegetated topographic lineament that was mapped by Jones (1959) as a high-angle fault. Because the rocks west of this lineament have no known equivalents at deeper structural levels, they are inferred to have originated from a structurally higher level than the amphibolite boudin-bearing unit. The lineament is therefore interpreted as a high-angle, west-side-down normal fault (Figure 1-4-1). West of this lineament are quartzofeldspathic gneisses with interlayered sillimanite-biotite and muscovite-biotite schists. These are overlain by a thick, monotonous
succession of hornblende-biotite-quartz-feldspar gneiss which forms Mount Griffin.

SUBAREA 2: RIDGES SOUTH OF YARD CREEK

A generally eastward-dipping succession of quartzofeldspathic gneiss and sillimanite-biotite schist with minor marble, diopside calc-silicate gneiss and amphibolite is exposed on ridges south of Yard Creek (Figure 1-4-1). The upper part of this succession consists of hornblende-biotite-quartz-feldspar gneiss with interlayered thin quartzite and marble units.

SUBAREA 3: MOUNT MARA – MARA LAKE

On Mount Mara a distinctive thick, locally diopsidic amphibolite is overlain by psammitic paragneiss, pelitic garnet-sillimanite schist and minor quartzite. These grade into a ble and amphibolite. The latter calcareous assemblage is succession that contains diopsidic calc-silicate gneiss, mar-tenatively correlated with similar rocks exposed in roadcuts on Highway 97A, along the southeast side of Mara Lake.

STRUCTURAL GEOLOGY: DUCTILE STRUCTURES

A strong penetrative foliation is in most places subparallel to compositional layering. The layering is deformed by tight to isoclinal folds with axial surfaces that are parallel to the foliation. Hinges of these folds are subparallel to a strong east-northeast and west-southwest-plunging stretching lineation which is defined by mineral aggregates and by alignment of inequant minerals, such as sillimanite and hornblende, on foliation surfaces. Most folds of this type display southward vergent asymmetry, as was noted by Jones (1959). In the Mount Griffin area the overturned short limbs of some of these folds are about 100 metres long, although they are typically smaller.

A younger set of open, upright to overturned, westward verging folds deforms the early folds, the foliation and the stretching lineation. These folds plunge gently to the north-

northwest or south-southeast and have east-northeast-dipping axial surfaces. They increase in scale and abundance from northeast to southwest across the Hunters Range: in the Mount Griffin area they are virtually absent; in the ridges south of Yard Creek they are common, with amplitudes of a few metres; and from Mount Mara to Mara Lake, westerly verging folds with amplitudes of over 100 metres are abundant and closely spaced.

Many of the rocks in the Hunters Range display mylonitic fabrics. Sheared pegmatites and migmatic pelites in the Three Valley Gap – Mount Griffin area and in the ridges south of Yard Creek display C/S fabrics and rotated feldspar porphyroclasts indicative of easterly directed shear (the sense of shear is here described in terms of relative motion of the upper member of the simple shear couple). South of Yard Creek, such rocks are cut by discrete shear zones within which C/S fabric, rotated porphyroclasts and shear bands indicate westerly directed sense of shear. Westward verging folds at Mount Mara locally are cut by shear zones of this type (Figure 1-4-2). Biotite in the westerly directed shear zones is commonly chloritized, although the other minerals (for example, sillimanite) appear fresh. Westerly directed shear zones are extensively developed in migmatic pelites along Mara Lake and along the Trans-Canada Highway near Sicamous. In contrast to the shear zones south of Yard Creek, these migmatises display little retrograde chloritization.

BRITTLE STRUCTURES

Steep north-northwest-striking extension fractures, ranging in scale from millimetre-wide cracks to extensive regional lineaments, are developed throughout the area. The thin cracks occur in parallel sets in many of the schists and generally are filled with chlorite. Some of the larger fractures, notably those in ridges south of Yard Creek, are filled with undeformed quartz feldspar porphyry dykes. Several tens of metres of normal or oblique slip have occurred along some of the fractures.

Schists between Three Valley Gap and Mount Griffin contain zones of extensive brittle deformation, expressed

![Figure 1-4-2](image-url). Schematic structural cross-sections A-A' and B-B', showing fold styles and kinematics of shear zones. The composite section A-A' – B-B' represents a transect from the hangingwall of the Eagle River fault (ERF) through progressively deeper levels of its footwall. See Figure 1-4-1 for locations.
both as discordant fractures and as layer-parallel zones of clay
gouge and fault breccia. These zones have a characteristic
rusty appearance due to oxidation of iron in biotite and
sulphide minerals. The deformation is probably related to the
inferred normal fault discussed previously. The amount of
displacement on this fault is unknown.

DISCUSSION

Stratigraphic relationships between and within the three
subareas are uncertain, but a few preliminary speculations
are offered here. The homogeneous texture and hornblende
mineralogy of the gneisses of Mount Griffin (Subarea 1)
suggest that they were derived from igneous protoliths. Sub-
area 2 contains hornblende gneiss of probable igneous origin
and a metasedimentary package that is predominantly
siliciclastic but which has a minor calcareous component.
Subarea 3 contains a shelf-like assemblage with both
siliciclastic and carbonate components. Rocks of Subarea 1
represent the deepest structural level within the study area,
and westward verging folds in the central and western parts of
the Hunters Range expose progressively higher structural
levels to the west. If structural levels correspond to strat-
igraphic levels, then the overall succession could represent an
evolving "passive" continental margin, beginning with a
volcanic rift stage (Subarea 1) and evolving through a transi-
tional stage (Subarea 2) into a marine shelf setting (Subarea 3).

The oldest preserved structures are probably related to
Mesozoic compression. Synmetamorphic tight to isoclinal
folds, with hinges that are subparallel to the stretching line-
ation related to easterly directed mylonitic fabric, are consist-
tent with the structural style of rocks that overlie the Mon-
ashee décollement elsewhere (for example, Journeay, 1986;
Bosdacin and Harrap, in press). By analogy with structures
described by Journeay (1986), the mylonitic fabric and line-
a tion are presumed to be expressions of Mesozoic easterly
directed thrusting, and the folds are inferred to have been
formed either before or during the early stages of thrusting.

Westerly directed shear fabrics, which locally overprint
the easterly directed fabrics, are most prominent in the west-
ern part, and hence the highest structural level, of the study
area (Figure 1-4-2). Westerly verging open folds (also most
prominent in the west) locally are cut by discrete westerly
directed shear zones that contain syntectonic sillimanite, but
they deform sillimanite lineations in other westerly directed
mylonites. Therefore, the late folds and mylonites appar-
ently are products of the same synmetamorphic, westerly
directed shearing event. Because the intensity of this defor-
mation seems to increase up structural section toward the
Eagle River fault, it likely is a ductile manifestation of Tertiary
tension. A sample of sheared pegmatite was collected from Sicamous so that this hypothesis can be tested
against uranium-lead zircon geochronology.

Unless it is a contact metamorphic effect due to the em-
placement of swarms of porphyry dykes, the retrograde chlor-
ritic overprint that characterizes westerly directed shears in
the central part of the Hunters Range implies that these shears
were active at higher crustal levels than were the mylonites
now exposed near Mara Lake. This could mean that Tertiary
extensional deformation propagated eastward as the footwall
of the Eagle River fault was uplifted. The extensive brittle
deformation west of Three Valley Gap is consistent with this
hypothesis.

Fieldwork planned for 1988 will focus on mapping the
Eagle River fault north and south of Sicamous, and on more
detailed mapping of specific areas within the Hunters Range.

ACKNOWLEDGMENTS

Fieldwork was supported by British Columbia Geoscience
Research Grant RG87-04, and by a Lithoprobe grant and
National Scientific Engineering Research Council of Canada
operating grant A2693 to R.L. Brown.

REFERENCES

Bosdacin, R. and Harrap, R.M. (in press): Stratigraphy and
Structure of the Monashee Complex and Overlying
Rocks Adjacent to the Trans-Canada Highway, West of
Revelstoke, British Columbia, in Current Research,
Part A, Geological Survey of Canada, Paper 88-1A
Brown, R.L., Journeay, J.M., Lane, L.S., Murphy, D.C.
and Rees, C.J. (1986): Oduction, Backfolding and
Piggyback Thrusting in the Metamorphic Hinterland of
the Southern Canadian Cordillera, Journal of Structural
Geology, Volume 8, pages 255-268.

Rocks, Shuswap Area, British Columbia, in,
Wheeler, J.O., Editor, Structure of the Southern Cana-
dian Cordillera, Geological Association of Canad,
Special Paper 16, pages 107-122.

Jones, A.G. (1959): Vernon Map-area, British Columbia,
Geological Survey of Canada, Memoir 296, 186 pages.

Journeay, J.M. (1986): Stratigraphy, Internal Strain and
Thermotectonic Evolution of the Northern Frenchman
Cap Dome: An Exhumed Duplex Structure, Omineca
Hinterland, S.E. Canadian Cordillera, Unpublished
Ph.D. Thesis, Queen's University, Kingston, Ontario,
350 pages.

Boundaries of the Omineca Belt in Southern British
Columbia: A Progress Report, in Current Research,
Part A, Geological Survey of Canada, Paper 86-1A,
pages 81-88.

Between the Mount Ida and Monashee Groups at Mara
Lake, British Columbia, Canadian Journal of Earth

Okulitch, A.V. (1974): Stratigraphy and Structure of the
Mount Ida Group, Vernon (82L), Seymour Arm (82M),
Bonaparte Lake (92P) and Kettle River (82E) Map-
areas, British Columbia, in Report of Activities, Part A.

— (1979): Lithology, Stratigraphy, Structure and
Mineral Occurrences of the Thompson-Shuswap-Okan-
agan Area, British Columbia, Geological Survey of
Canada, Open File 637.

