MINFILE-REDESIGN AND PROGRESS REPORT*

By A. F. Wilcox and C. B. Borsholm

INTRODUCTION

Important progress has been made in the redesign of MINFILE during the past year. An "ideal" database model (Figure 7-2-1) was drafted for database navigation, several new coding forms (Figures 7-2-2 and 7-2-3) and a new coding manual were completed, and all existing data that resided on the IBM mainframe were downloaded into the VAX in the new format. In addition, under the Canada/British Columbia Mineral Development Agreement (MDA), recording of all mineral occurrences in MINFILE began. Two open file publications were also prepared, one on platinum and one on magnesite occurrences (in press) in the province.

DATABASE DESIGN

"A mineral deposit" includes naturally occurring deposits of both metallic and industrial minerals and of the fossil fuels and is defined as a volume of mineral-bearing material of economic or scientific interest sufficiently homogeneous in the opinion of the file-builder to be considered an entity" (Geological Survey of Canada, Paper 78-26).

This definition is used to form the basis of MINFILE occurrences. When the redesign of MINFILE commenced it was decided to use a relational database model and techniques for the database design.

The ideal design of the database, in terms of an "entity-relationship" model, is illustrated in Figure 7-2-1. The square boxes represent entities, diamond-shaped boxes show the relationship of the entity to mineral deposits and circles represent attributes of the entity. The way the "entity-relationship" model works is illustrated by the following example; a deposit type may contain many mineral deposits and a mineral deposit may be characterized as more than one deposit type, for example, "vein" and "stockwork".

Attributes can be generally thought of as deposit type codes and descriptions of all the tables that make up the relational database.

COMPUTER SOFTWARE

CINCOM Systems is the vendor of our computer software. The main product, called ULTRA, is a directory driven database and information management system designed for the VAX minicomputer using the VMS operating system.

The ULTRA directory is the central point of control for the system. Its integration with Logical User Views (LUV) insulates all users from the physical structure of the database. A subsequent change to a logical view usually does not require programs to be changed or recompiled.

ULTRA allows standard application programs written in COBOL, FORTRAN, or BASIC to access the database management system (DBMS) without including logic to physically navigate the DBMS. The programmer simply accesses the logical view of the data needed. MANTIS, another CINCOM product, is a fourth generation language that is able to interact directly with the LUV and DBMS.

The new MINFILE programs were written in MANTIS with the exception of a routine to convert latitude/longitude to UTM which is written in FORTRAN. After initial testing of the report outputs it was found that MANTIS could not easily produce the type of output reports required. It was decided that COBOL was the most logical alternative.

DATA COLLECTION

CODING FORMS

During the past 18 months the coding form has undergone five revisions, with the latest version illustrated in Figure 7-2-2. Production and reserve information is input from separate coding forms (see detail on reserves following). The information indicated by the dashed lines on the main coding form represents information that is collected for the geologists (coders) use only and is not stored in the computer.

NEW FIELDS

The reader is referred to the MINFILE coding manual (in press) for detailed descriptions of fields, codes and tables. Below is a brief summary of the significant changes.

STATUS

When a property has reached the development stage and beyond, extensive work has usually been performed, often including bulk sampling or production. It is now possible to record whether this work has been conducted on surface or underground.

MINERALIZATION

We are now gathering information on gangue and alteration minerals as well as information on the economic mineralization. The age of the mineralization and isotopic dating of the deposit are also recorded.

GEOMETRY

Information is now being gathered on the geometry of the mineral deposit. This information includes shape of the deposit (for example, tabular), modifiers to the shape (for example, faulted), the dimensions of the deposit and the attitude.

HOST ROCK

The host rock section of the coding form is divided into three sections: dominant rock type; stratigraphy; and igneous/metasomorphizm/other relationships. Data are also gathered on the age of the host rock.

GEOLOGICAL SETTING

Information on the geological setting of the mineral occurrence is now gathered and stored. This includes the tectonic belt that the mineral occurrence resides in, the terrain associated with the occurrence, the physiographic region and any available data on metamorphic relationships and grades.

TEXT

One of the strong features of the system is the ability to input an unlimited amount of textual information.

* This project is a contribution to the Canada/British Columbia Mineral Development Agreement.

433
Host Rocks

<table>
<thead>
<tr>
<th>Host Rock Type</th>
<th>Sedimentary</th>
<th>Volcanic</th>
<th>Metamorphic</th>
<th>Metamorphic</th>
</tr>
</thead>
</table>

Geological Setting

<table>
<thead>
<tr>
<th>Tectonic Belt</th>
<th>Fore</th>
<th>Middle</th>
<th>Ferrane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physiographic Area

<table>
<thead>
<tr>
<th>Metamorphism Type</th>
<th>Contact Relationship</th>
<th>Pre-Mineralization</th>
<th>Syn-Mineralization</th>
<th>Post-Mineralization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capstone Geology

Comment on Geological Setting	

Bibliography

Place best or most recent source first.

<table>
<thead>
<tr>
<th>Code By</th>
<th>Field Checked</th>
<th>Date Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7.2. Coding form.
RESERVES

A new reserves coding form has been designed (see Figure 7-2-3) and has seen limited distribution. In the previous versions of MINFILE all reserve calculations for a property were saved no matter how many or what the status of the reserves were. Under the new design only two reserve figures for a given year per ore zone may be entered for any single reserve category. Only the most recent year in each category will be saved. A new category called “Best Assay” has been added with its associated sampling method being noted. The best assay category is for significant properties which have not had enough development work completed on them for formal reserve figures to be calculated. After formal reserve figures for the property have been released the best assay category will be deleted to allow for new reserves to be calculated. Another new feature which has just been introduced is a confidence factor. This is meant to give the end-users of MINFILE an indication of the reliability of the reserve measurements. No reflection is intended on who calculated the reserve figures, but is strictly a judgment value assigned by the coder, based on reliability of information. For example, data from a feasibility study are assigned a higher reliability than information from a press release.

DATA RETRIEVAL

Two methods exist for data retrieval. SPECTRA, a CINCOM product which can be used for conducting ad hoc enquiries on any field in the database, and through the use of preprogrammed searches. Only the preprogrammed searches will be dealt with here. The enquiry system is based on the use of Boolean logic to search and reduce the resultant deposit file. This involves the use of “and”, “or” and “not” conditions to reduce a file. For example, if a list is requested for deposits containing gold “and” silver, then all deposits that contain both commodities will be shown. If a list is requested for deposits containing gold ‘or’ silver, then all deposits containing one or the other commodity will be returned.

The enquiry process begins when the area selection screen is returned. The user initially has the option of narrowing the search by choosing an area either by latitude/longitude; UTM; or NTS designations. This can be further used in conjunction with either mining divisions, physiographic regions, tectonic belts or terranes. The default is the whole province. When a result is obtained a new menu appears listing the twelve preprogrammed searches (Table 7-2-1). At any stage of the search the user has the option of browsing any
Figure 7-2.4. Areas coded.
Figure 7.25. Change in MINFILE numbers.
one of the data maintenance screens that exist for any given occurrence. The user may combine any of these preprogrammed searches together, thus further refining the search.

TABLE 7-2-1. PREPROGRAMMED SEARCHES

1. DEPOSIT NAME
2. STATUS
3. COMMODITY
4. MINERALOGY
5. AGE OF MINERALIZATION
6. DEPOSIT TYPE
7. GENETIC TYPE
8. HOST ROCK NAME
9. ROCK TYPE (LITHOLOGY)
10. STRATIGRAPHIC AGE
11. DEPOSITS WITH RESERVES
12. DEPOSITS WITH PRODUCTION

RECODING DEPOSITS

A team of contract geologists, aided by a research assistant, have been hired under the Canada/British Columbia Mineral Development Agreement to recode all the mineral occurrences in the province and to establish a hard-copy backup of all references associated with each occurrence. Coders receive technical guidance from staff and district geologists who have first-hand knowledge of the areas being recoded. Geological Survey Branch staff have also assisted in the collection of data and submitted revised descriptions of mineral occurrences that they have visited in the field.

As of the end of October 1986, over 2400 occurrences have been rewritten. This represents approximately 25 per cent of the existing occurrences in MINFILE. Of these 2400 occurrences approximately 25 per cent represent new mineral showings. Figure 7-2-4 shows the area of the province which has been reviewed by coders and staff. All the coal properties have been coded and are included in the totals.

In the old version of MINFILE, the deposit number was a sequential number based on the NT system. Since one of the key elements in the redesign of MINFILE is for graphical representation, it was decided to change this key on certain map sheets. Figure 7-2-5 represents the areas affected by this change. For the most part they are the coastal regions around the Queen Charlotte Islands and the Rocky Mountain Foothills near the Alberta border.

Two open file publications have also been prepared in conjunction with the recoding. The first was released as Open File 1986-7 entitled “Occurrence and Distribution of Platinum-Group Elements in British Columbia”, compiled by Jacqui Rublee. The other publication “Magnesite, Bmclite and Hydromagnesite Occurrences in British Columbia”, compiled by Brian Grant, is currently in preparation.

INFORMATION AVAILABLE

Upon the completion of redesigned MINFILE the following output reports will be available:

1. Paper (complete listings and descriptions of all occurrences).
2. Microfiche.
3. Computer tape (ASCI1 or EBCDIC).
4. MS-DOS diskettes (by map sheet area).

A number of conventional reports and indices will also be available. These include:

1. Alphabetic listing of deposits.
2. Commodity index.
3. Numeric index of MINFILE numbers.

Other selective searches and reports will be produced on a user-pal basis. SPECTRA, another CINCOM product, will be used to perform these ad hoc enquiries and to produce the reports.

Further information is available by telephone or mail from the authors at the address below:

- Geological Survey Branch
- Mineral Resources Division
- Ministry of Energy, Mines and Petroleum Resources
- Parliament Buildings
- Victoria, British Columbia
- V8V 1X4
 (604) 387-5666 or 387-1301

ACKNOWLEDGMENTS

The authors would like to acknowledge and thank Dr. A. H. Campbell, Bill Green and Mit Tilkov for their assistance in providing direction for database design; Dr. Trygve Huy for his participation in the project team with the authors; the management committee (Dr. W.R. Smyth, Dr. W.J. McMillan, J.G. MacArthur, K.G. Payne and A.B. Guilbault) for their guidance. Programming has been done by David Piesse of Anthony MacAuley Associates Ltd. and Gordon Lowe of SHEL-Systemhouse. The coding is under the direction of the senior coder, Brian Grant. To date a total of six full-time and part-time geologists have also been hired to carry out this task. The present coding team consists of Brian Grant, Gary Foye, Larry Jones, Mary MacLean and Janet Fontaine. The authors would also like to thank Jacqui Rublee, John Bradford, Eileen Van der Flur, Karen Dewson, Dari Allard and all other staff members for their assistance in recoding occurrences in MINFILE. The recoding of deposits, the development of reference files and the compilation of commodity open files have been funded by the Canada/British Columbia Mineral Development Agreement.

REFERENCES

REPORT ON THE ESTABLISHMENT OF A COMPUTER FILE OF RADIOMETRIC DATES*

By A. Bentzen

INTRODUCTION

During the early part of 1986, a computer file was established consisting of the radiometric dates and ancillary data recorded in a manual file maintained by Dr. R.L. Armstrong of the Department of Geological Sciences, at The University of British Columbia. The great majority of dates are potassium-argon dates, with the remainder being rubidium-strontium, uranium-lead, and a few fission track dates. The number of dates is estimated to be approximately 3000.

DESCRIPTION OF MANUAL FILE

The manual file maintained by Dr. Armstrong comprises a set of forms in ring binders organized by 1:250 000-scale NTS designations. Three types of forms make up the file, one for each of the three major classes of radiometric dates. The design of the forms was influenced by what is included in the United States Geological Survey Radiogenic Age Data Bank and the Geological Survey of Canada geochron file forms. The information recorded includes sample identification and geographic information, source material and analytical data, and the resultant dates and their interpretation. Also included are revised figures for dates to reflect, for example, revised decay constants. In order to obtain all the information available for one locale, it may be necessary to consult several forms since a single form only covers one dating method and dates may have been obtained on different occasions. As a consequence of having information spread over several forms a certain amount of information is duplicated, a fact which was taken into account in the design of the computer file.

LOGICAL STRUCTURE OF COMPUTER FILE

The computer file consists of a single ("flat") file comprising a number of logical records. Each record is based on the radiometric dating effort of a particular researcher, at a unique location and on a single rock type. Each logical record consists of a collection of forms, and each form is a collection of data items. The file is line-oriented with each data item occupying a line; a field name occupies the left side of the line with a data field following on the right. Thus, at a lower level, the structure of the file is quite similar to that used in the NAMELIST concept in FORTRAN or the structure used on the distribution tapes of MINFILE.

In order to reduce redundancy, data items common to the three types of form have been "factored out". These items include identity of collector, rock type, latitude and longitude and description of location. The items that remain within each form are then specific to the kind of analysis involved.

ACCESS TO AND MODIFICATION OF COMPUTER FILE

Since the file might be put to different uses in different computing environments, it was felt that allowance for flexible access should be part of the design. The present design allows for accessing by a simple text editor, in fact that is in part how the file was created. A simple retrieval should not require a complicated program and with some modification, the file, may be used as an input file to some database management systems.

Modification of the file, such as alteration or the addition of new data, is not difficult. Addition of new data fields and forms is also possible, though such additions may affect how current programs access the file.

ACKNOWLEDGMENTS

I would like to thank Krista Scott for suggesting the project. The work was financially supported by the Ministry of Energy, Mines and Petroleum Resources through the Canada/British Columbia Mineral Development Agreement; by the Geological Survey of Canada; and by R.L. Armstrong, who also supplied the manual file.

* This project is a contribution to the Canada/British Columbia Mineral Development Agreement.